bilby.core.sampler.dynesty3_utils.BaseEnsembleSampler
- class bilby.core.sampler.dynesty3_utils.BaseEnsembleSampler(**kwargs)[source]
Bases:
InternalSampler- __init__(**kwargs)[source]
Initialize the internal sampler.
Importantely this sets up the sampler_kwargs that is being passed to each .sample() call
- Parameters:
- kwargsdict
A dictionary of additional method-specific parameters. This common keywords:
- nonboundedarray
Array of boolean values indicating which dimensions are non-bounded.
- periodicarray
Array of boolean values indicating which dimensions are periodic.
- reflectivearray
Array of boolean values indicating which dimensions are reflective.
- ndim: int
Number of dimensions.
- __call__(*args, **kwargs)
Call self as a function.
Methods
__init__(**kwargs)Initialize the internal sampler.
prepare_sampler([loglstar, points, axes, ...])Prepare the list of arguments for sampling.
sample(args)Sample a new live point.
tune(tuning_info[, update])Accumulate sampling info and optionally update the proposal scale and other tuning parameters.
Attributes
citationsHow often to force updating the bounds The value is in units of ncall per nlive.
- prepare_sampler(loglstar=None, points=None, axes=None, seeds=None, prior_transform=None, loglikelihood=None, nested_sampler=None)[source]
Prepare the list of arguments for sampling.
- Parameters:
- loglstarfloat
Ln(likelihood) bound.
- points~numpy.ndarray with shape (n, ndim)
Initial sample points.
- axes~numpy.ndarray with shape (ndim, ndim)
Axes used to propose new points.
- seeds~numpy.ndarray with shape (n,)
Random number generator seeds.
- prior_transformfunction
Function transforming a sample from the a unit cube to the parameter space of interest according to the prior.
- loglikelihoodfunction
Function returning ln(likelihood) given parameters as a 1-d ~numpy array of length ndim.
- nested_sampler~dynesty.samplers.Sampler
The nested sampler object used to sample.
- Returns:
- arglist:
List of SamplerArgument objects containing the parameters needed for sampling.
- static sample(args)[source]
Sample a new live point.
- Parameters:
- argsSamplerArgument
The arguments needed for sampling.
- Returns:
- u~numpy.ndarray with shape (ndim,)
Position of the final proposed point within the unit cube.
- v~numpy.ndarray with shape (ndim,)
Position of the final proposed point in the target parameter space.
- loglfloat
Ln(likelihood) of the final proposed point.
- ncint
Number of function calls used to generate the sample.
- tuning_infodict
Collection of ancillary quantities used to tune
scale.
- tune(tuning_info, update=False)[source]
Accumulate sampling info and optionally update the proposal scale and other tuning parameters.
- Parameters:
- tuning_infodict
Dictionary containing the sampling information.
- updatebool
Whether to update the proposal scale or not (default: False).
- property update_bound_interval_ratio
How often to force updating the bounds The value is in units of ncall per nlive. I.e. the value of 10 means for N live points, the bound will be updated every 10 * N calls