bilby.core.sampler.ptmcmc.PTMCMCSampler
- class bilby.core.sampler.ptmcmc.PTMCMCSampler(likelihood, priors, outdir='outdir', label='label', use_ratio=False, plot=False, skip_import_verification=False, **kwargs)[source]
Bases:
MCMCSampler
bilby wrapper of PTMCMC (https://github.com/jellis18/PTMCMCSampler/)
All positional and keyword arguments (i.e., the args and kwargs) passed to run_sampler will be propagated to PTMCMCSampler.PTMCMCSampler, see documentation for that class for further help. Under Other Parameters, we list commonly used kwargs and the bilby defaults.
- Parameters:
- Niter: int (2*10**4 + 1)
The number of mcmc steps
- burn: int (5 * 10**3)
If given, the fixed number of steps to discard as burn-in
- thin: int (1)
The number of steps before saving the sample to the chain
- custom_proposals: dict (None)
Add dictionary of proposals to the array of proposals, this must be in the form of a dictionary with the name of the proposal, then a list containing the jump function and the weight e.g {‘name’ : [function , weight]} see (https://github.com/rgreen1995/PTMCMCSampler/blob/master/examples/simple.ipynb) and (http://jellis18.github.io/PTMCMCSampler/PTMCMCSampler.html#ptmcmcsampler-ptmcmcsampler-module) for examples and more info.
- logl_grad: func (None)
Gradient of likelihood if known (default = None)
- logp_grad: func (None)
Gradient of prior if known (default = None)
- verbose: bool (True)
Update current run-status to the screen
- __init__(likelihood, priors, outdir='outdir', label='label', use_ratio=False, plot=False, skip_import_verification=False, **kwargs)[source]
- __call__(*args, **kwargs)
Call self as a function.
Methods
__init__
(likelihood, priors[, outdir, ...])calc_likelihood_count
()calculate_autocorrelation
(samples[, c])Uses the emcee.autocorr module to estimate the autocorrelation
check_draw
(theta[, warning])Checks if the draw will generate an infinite prior or likelihood
get_expected_outputs
([outdir, label])Get lists of the expected outputs directories and files.
get_initial_points_from_prior
([npoints])Method to draw a set of live points from the prior
Get a random draw from the prior distribution
log_likelihood
(theta)log_prior
(theta)Prints logging info as to how nburn was calculated
prior_transform
(theta)Prior transform method that is passed into the external sampler.
run_sampler
(*args, **kwargs)A template method to run in subclasses
TODO: implement a checkpointing method
write_current_state_and_exit
([signum, frame])Make sure that if a pool of jobs is running only the parent tries to checkpoint and exit.
Attributes
abbreviation
check_point_equiv_kwargs
list: List of parameters providing prior constraints
custom_proposals
default_kwargs
external_sampler_name
list: List of parameter keys that are not being sampled
hard_exit
dict: Container for the kwargs.
nburn_equiv_kwargs
int: Number of dimensions of the search parameter space
npool
npool_equiv_kwargs
nwalkers_equiv_kwargs
sampler_function_kwargs
sampler_init_kwargs
sampler_name
sampling_seed_equiv_kwargs
Name of keyword argument for setting the sampling for the specific sampler.
list: List of parameter keys that are being sampled
- calculate_autocorrelation(samples, c=3)[source]
Uses the emcee.autocorr module to estimate the autocorrelation
- Parameters:
- samples: array_like
A chain of samples.
- c: float
The minimum number of autocorrelation times needed to trust the estimate (default: 3). See emcee.autocorr.integrated_time.
- check_draw(theta, warning=True)[source]
Checks if the draw will generate an infinite prior or likelihood
Also catches the output of numpy.nan_to_num.
- Parameters:
- theta: array_like
Parameter values at which to evaluate likelihood
- warning: bool
Whether or not to print a warning
- Returns:
- bool, cube (nlive,
True if the likelihood and prior are finite, false otherwise
- property constraint_parameter_keys
list: List of parameters providing prior constraints
- property fixed_parameter_keys
list: List of parameter keys that are not being sampled
- classmethod get_expected_outputs(outdir=None, label=None)[source]
Get lists of the expected outputs directories and files.
These are used by
bilby_pipe
when transferring files via HTCondor. Both can be empty. Defaults to a single directory:"{outdir}/{name}_{label}/"
, wherename
isabbreviation
if it is defined for the sampler class, otherwise it defaults tosampler_name
.- Parameters:
- outdirstr
The output directory.
- labelstr
The label for the run.
- Returns:
- list
List of file names.
- list
List of directory names.
- get_initial_points_from_prior(npoints=1)[source]
Method to draw a set of live points from the prior
This iterates over draws from the prior until all the samples have a finite prior and likelihood (relevant for constrained priors).
- Parameters:
- npoints: int
The number of values to return
- Returns:
- unit_cube, parameters, likelihood: tuple of array_like
unit_cube (nlive, ndim) is an array of the prior samples from the unit cube, parameters (nlive, ndim) is the unit_cube array transformed to the target space, while likelihood (nlive) are the likelihood evaluations.
- get_random_draw_from_prior()[source]
Get a random draw from the prior distribution
- Returns:
- draw: array_like
An ndim-length array of values drawn from the prior. Parameters with delta-function (or fixed) priors are not returned
- property kwargs
dict: Container for the kwargs. Has more sophisticated logic in subclasses
- log_likelihood(theta)[source]
- Parameters:
- theta: list
List of values for the likelihood parameters
- Returns:
- float: Log-likelihood or log-likelihood-ratio given the current
likelihood.parameter values
- log_prior(theta)[source]
- Parameters:
- theta: list
List of sampled values on a unit interval
- Returns:
- float: Joint ln prior probability of theta
- property ndim
int: Number of dimensions of the search parameter space
- prior_transform(theta)[source]
Prior transform method that is passed into the external sampler.
- Parameters:
- theta: list
List of sampled values on a unit interval
- Returns:
- list: Properly rescaled sampled values
- sampling_seed_key = None
Name of keyword argument for setting the sampling for the specific sampler. If a specific sampler does not have a sampling seed option, then it should be left as None.
- property search_parameter_keys
list: List of parameter keys that are being sampled
- write_current_state_and_exit(signum=None, frame=None)[source]
Make sure that if a pool of jobs is running only the parent tries to checkpoint and exit. Only the parent has a ‘pool’ attribute.
For samplers that must hard exit (typically due to non-Python process) use
os._exit
that cannot be excepted. Other samplers exiting can be caught as aSystemExit
.