bilby.gw.prior.HealPixPrior
- class bilby.gw.prior.HealPixPrior(dist, name=None, latex_label=None, unit=None)[source]
 Bases:
JointPriorA prior distribution that follows a user-provided HealPix map for one parameter.
See
bilby.gw.prior.HealPixMapPriorDistfor more details of how to instantiate the prior.- __init__(dist, name=None, latex_label=None, unit=None)[source]
 - Parameters:
 - dist: bilby.gw.prior.HealPixMapPriorDist
 The base joint probability.
- name: str
 The name of the parameter, it should be contained in the map. One of [“ra”, “dec”, “luminosity_distance”].
- latex_label: str
 Latex label used for plotting, will be read from default values if not provided.
- unit: str
 The unit of the parameter.
- __call__()[source]
 Overrides the __call__ special method. Calls the sample method.
- Returns:
 - float: The return value of the sample method.
 
Methods
__init__(dist[, name, latex_label, unit])cdf(val)Generic method to calculate CDF, can be overwritten in subclass
from_json(dct)from_repr(string)Generate the prior from its __repr__
get_instantiation_dict()is_in_prior_range(val)Returns True if val is in the prior boundaries, zero otherwise
ln_prob(val)Return the natural logarithm of the prior probability.
prob(val)Return the prior probability of val
rescale(val, **kwargs)Scale a unit hypercube sample to the prior.
sample([size])Draw a sample from the prior.
to_json()Attributes
boundaryReturns True if the prior is fixed and should not be used in the sampler.
Latex label that can be used for plots.
If a unit is specified, returns a string of the latex label and unit
maximumminimumunitwidth- property is_fixed
 Returns True if the prior is fixed and should not be used in the sampler. Does this by checking if this instance is an instance of DeltaFunction.
- Returns:
 - bool: Whether it’s fixed or not!
 
- is_in_prior_range(val)[source]
 Returns True if val is in the prior boundaries, zero otherwise
- Parameters:
 - val: Union[float, int, array_like]
 
- Returns:
 - np.nan
 
- property latex_label
 Latex label that can be used for plots.
Draws from a set of default labels if no label is given
- Returns:
 - str: A latex representation for this prior
 
- property latex_label_with_unit
 If a unit is specified, returns a string of the latex label and unit
- ln_prob(val)[source]
 Return the natural logarithm of the prior probability. Note that this will not be correctly normalised if there are bounds on the distribution.
- Parameters:
 - val: array_like
 value to evaluate the prior log-prob at
- Returns
 - =======
 - float:
 the logp value for the prior at given sample
- prob(val)[source]
 Return the prior probability of val
- Parameters:
 - val: array_like
 value to evaluate the prior prob at
- Returns:
 - float:
 the p value for the prior at given sample