bilby.bilby_mcmc.sampler.BilbyPTMCMCSampler
- class bilby.bilby_mcmc.sampler.BilbyPTMCMCSampler(convergence_inputs, pt_inputs, proposal_cycle, pt_rejection_sample, pool, use_ratio, evidence_method, initial_sample_method, initial_sample_dict, normalize_prior=True)[source]
Bases:
object
- __init__(convergence_inputs, pt_inputs, proposal_cycle, pt_rejection_sample, pool, use_ratio, evidence_method, initial_sample_method, initial_sample_dict, normalize_prior=True)[source]
- __call__(*args, **kwargs)
Call self as a function.
Methods
__init__
(convergence_inputs, pt_inputs, ...)Adapt the temperature of the chains
compute_evidence
(outdir, label[, make_plots])compute_evidence_per_ensemble
(method, kwargs)ensemble_step
()get_initial_betas
()sampler_list_by_column
(column)set_convergence_inputs
(convergence_inputs)set_pt_inputs
(pt_inputs)setup_sampler_dictionary
(convergence_inputs, ...)step_all_chains
()stepping_stone_evidence
(ptchain, outdir, label)Compute the evidence using the stepping stone approximation.
swap_tempered_chains
()thermodynamic_integration_evidence
(ptchain, ...)Computes the evidence using thermodynamic integration
Attributes
evaluations
ln_z
ln_z_err
minimum_index
nsamples
nsamples_last
nsamples_nocache
position
primary_sampler
rejection_sampling_count
A list of all individual samplers
sampler_list_of_tempered_lists
samples
tau
tempered_sampler_list
zerotemp_sampler_list
- adapt_temperatures()[source]
Adapt the temperature of the chains
Using the dynamic temperature selection described in arXiv:1501.05823, adapt the chains to target a constant swap ratio. This method is based on github.com/willvousden/ptemcee/tree/master/ptemcee
- property sampler_list
A list of all individual samplers
- stepping_stone_evidence(ptchain, outdir, label, make_plots=True)[source]
Compute the evidence using the stepping stone approximation.
See https://arxiv.org/abs/1810.04488 and https://pubmed.ncbi.nlm.nih.gov/21187451/ for details.
The uncertainty calculation is hopefully combining the evidence in each of the steps.
- Returns:
- ln_z: float
Estimate of the natural log evidence
- ln_z_err: float
Estimate of the uncertainty in the evidence